CmSc310
Artificial Intelligence

Machine Learning

1. What is learning?
 - A computer program learns if it improves its performance at some task through experience (T. Mitchell, 1997)
 - Any change in a system that allows it to perform better (Simon 1983)

What do we learn:
 - Descriptions
 - Relations
 - Procedures

Relations and procedures are learned in the form of rules how to recognize/classify objects, states, events, and rules how to transform an initial situation to achieve a goal (final state)

How do we learn:
 - Rote learning - storage of computed information.
 - Taking advice from others. (Advice may need to be operationalized.)
 - Learning from problem solving experiences - remembering experiences and generalizing from them. (May add efficiency but not new knowledge.)
 - Learning from examples. (May or may not involve a teacher.)
 - Learning by experimentation and discovery. (Decreasing burden on teacher, increasing burden on learner.)

2. Approaches to Machine Learning
 - Symbol-based
 - Connectionist Learning
 - Evolutionary learning

3. Concept Learning - Inductive Symbol-Based Machine Learning
 - Decision trees: ID3 algorithm
 - Version space search
 - Explanation-based learning
 - Supervised learning
 - Reinforcement learning
3.1. Version space search for concept learning

- Concepts – describe classes of objects
- Concepts consist of feature sets
- Operation on concept descriptions
 - Generalization: Replace a feature with a variable
 - Specialization: Instantiate a variable with a feature

Positive and Negative examples of a concept

- The concept description has to match all positive examples
- The concept description has to be false for the negative examples

The VERSION SPACE represents all the alternative PLAUSIBLE DESCRIPTIONS of the concept. A plausible description is one that is applicable to all known positive examples and no known negative example.

The version space contains two sets of hypotheses:
 - \(G \) – the most general hypotheses that match the training data
 - \(S \) – the most specific hypotheses that match the training data

Each hypothesis is represented as a vector of values of the known attributes

Example:
Consider the task to obtain a description of the concept: Japanese Economy car.
The attributes under consideration are: Origin, Manufacturer, Color, Decade, Type

Assume that the training data are:
- Positive example: (Japan, Honda, Blue, 1980, Economy)
- Positive example: (Japan, Honda, White, 1980, Economy)
- Negative example: (Japan, Toyota, Green, 1970, Sports)

The most general hypothesis that matches these data is:
\((?, \text{Honda}, ?, ?, ?)\), the symbol ‘?’ means that the attribute may take any value

The most specific hypothesis that matches the examples is:
\((\text{Japan}, \text{Honda}, ?, 1980, \text{Economy})\)

General-to-Specific Ordering

Concept learning: Search through a search space that consists of all possible hypotheses, where the goal is the hypothesis that most closely represents the concept.
Partial ordering in the search space:

Most general hypothesis: \(h_g = < ?, ?, \ldots, ? > \)

Most specific hypothesis: \(h_s = < \emptyset, \emptyset, \ldots > \)

Relation “more general than or as general as”

\(h_1 \geq_g h_2 \)

All instances matched by \(h_2 \) are also matched by \(h_1 \).

Algorithm: CANDIDATE ELIMINATION

Given: - A representation language
- A set of positive and negative examples expressed in that language

Compute: A concept description that is consistent with all the positive examples and none of the negative examples.

Method: - Initialize \(G \) to contain one element: all features are variables.
- Initialize \(S \) to contain one element: the first positive example.
- Accept a new training example.

- If it is a positive example:
 - Remove from \(G \) any descriptions that do not cover the example.
 - Update \(S \) to contain the most specific set of descriptions in the version space that cover the example and the current elements of the \(S \) set (i.e., generalize the elements of \(S \) as little as possible so that they cover the new training example).

- If it is a negative example:
 - Remove from \(S \) any descriptions that cover the example.
 - Update \(G \) to contain the most general set of descriptions in the version space that do not cover the example (i.e., specialize the elements of \(G \) as little as possible so that the negative example is no longer covered by any of the elements of \(G \)).

- If \(S \) and \(G \) are both singleton sets, then:
 - if they are identical, output their value and stop.
 - if they are different, the training cases were inconsistent. Output this result and stop.

- Else continue accepting new training examples.
Example: (from Rich & Knight): Learning the concept of "Japanese economy car"

Features: Origin, Manufacturer, Color, Decade, Type

POSITIVE EXAMPLE: (Japan, Honda, Blue, 1980, Economy)

Initialize G to singleton set that includes everything
Initialize S to singleton set that includes first positive example

\[
G = \{ (?, ?, ?, ?, ?) \} \\
S = \{ (Japan, Honda, Blue, 1980, Economy) \}
\]

NEGATIVE EXAMPLE: (Japan, Toyota, Green, 1970, Sports)

Specialize G to exclude negative example

\[
G = \{ (?, Honda, ?, ?, ?), \\
(?, ?, Blue, ?, ?,) \\
(?, ?, ?, 1980, ?) \\
(?, ?, ?, ?, Economy) \} \\
S = \{ (Japan, Honda, Blue, 1980, Economy) \}
\]

POSITIVE EXAMPLE: (Japan, Toyota, Blue, 1990, Economy)

Remove from G descriptions inconsistent with positive example
Generalize S to include positive example

\[
G = \{ (?, ?, Blue, ?, ?) \\
(?, ?, ?, ?, Economy) \} \\
S = \{ (Japan, ?, Blue, ?, Economy) \}
\]

NEGATIVE EXAMPLE: (USA, Chrysler, Red, 1980, Economy)

Specialize G to exclude negative example
(but staying within version space, i.e., staying consistent with S)

\[
G = \{ (?, ?, Blue, ?, ?) \\
(Japan, ?, ?, ?, Economy) \} \\
S = \{ (Japan, ?, Blue, ?, Economy) \}
\]
POSITIVE EXAMPLE: (Japan, Honda, White, 1980, Economy)

Remove from G descriptions inconsistent with positive example
Generalize S to include positive example

G = {(Japan, ?, ?, ?, Economy)}
S = {(Japan, ?, ?, ?, Economy)}

S = G, both singleton => done!